Autor Tema: ¿Sabes matemáticas? ¡Demuéstralo!  (Leído 5897 veces)

0 Usuarios y 1 Visitante están viendo este tema.

Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
¿Sabes matemáticas? ¡Demuéstralo!
« en: 06 de Mayo de 2012, 23:50 »
Es muy sencillo, 3 pruebas de matemáticas, y a ver quién es capaz de razonar mayor número de ellas. Si se adivinan, puedo poner más.

Comencemos:

------------------------------------------------------------------------------------------------------------------------

1: Razona una serie de 345823 números compuestos consecutivos pertenecientes a N.

------------------------------------------------------------------------------------------------------------------------

2: La puerta trasera de las potencias. Supongamos una función f(n, c) sobre R, con n y c pertenecientes a N, de tal manera que la función f(n,c) nos devuelve las potencias del número n cogidas de c en c cifras y en la parte decimal. Por poner un ejemplo:
f(2,3) sería la potencia del número 2 cogida de 3 en 3 cifras =>
f(2,3) = 0.001002004008016032064128256513024...
Lo que he puesto en negrita es porque hay una solapación del número 1024 (que tiene 4 cifras en lugar de 3) con el número 512.
Otro ejemplo:
f(3,4) sería la potencia del número 3 codiga de 4 en 4 cifras =>
f(3,4) = 0.000100030009002700810243...

Calcular la fórmula matemática de f(n,c)
La fórmula debe de ser de cálculo simple, no series ni nada por el estilo, solamente usando los operadores más clásicos (suma, resta, multiplicación, división, potencia).

------------------------------------------------------------------------------------------------------------------------

3: Se tiene una baraja de n cartas de magic, todas ellas diferentes. Se mezclan usando el siguiente proceso, se dice un número k, entonces se cogen k cartas para un montón, y el resto para otro montón. Se saca una carta del primer montón a la mesa, luego otra del segundo montón, primer montón, segundo montón... así sucesivamente. Si algún montón se queda sin cartas se continúa con el otro.
Ejemplo, supongamos una baraja de 10 cartas, las llamaremos de A a J, y supongamos que k es 7:
Baraja inicial: [A, B, C, D, E, F, G, H, I, J]
Montón 1: [A, B, C, D, E, F, G]
Montón 2: [H, I, J]
Baraja final: [G, F, E, D, J, C, I, B, H, A]

Ahora queremos calcular la cantidad de veces que tendríamos que repetir el proceso de barajar (con el mismo número k) hasta que la baraja quede exactamente igual que la original.

En el caso del ejemplo, 10 cartas  con k=7, tendríamos que bajar 6 veces.

Se pide, calcular la cantidad de veces que tendríamos que barajar una baraja de 1342 cartas con k=632.
La respuesta debe ser razonada, no solamente calculada.



« última modificación: 08 de Mayo de 2012, 22:45 por ---------- »

Desconectado Ningüino CDR-lar

  • Mossirg Lig, miembro renombrado del CSUI

  • Mensajes: 21473
  • Cosas: 50
  • Sexo: Masculino
  • Cipotes, cipotes, cipotes: eso es el rocio.
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #1 en: 08 de Mayo de 2012, 20:47 »
¿Esto qué es? ¿Un pique por el tema del talento? Igual soy idiota y no pillo el chiste, pero un serie de 345823 números me parece que no la cuentas ni tú.
Hay partes del comportamiento de los bonobos que molan y otras que no molan tanto. Como pasa con la Biblia.

Hoijan, a follar al parque.

Los trapos sucios se limpian en casa  X(

Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #2 en: 08 de Mayo de 2012, 20:56 »
No es ningún pique, son preguntas de matemáticas de verdad, y a cualquiera que le gusten las matemáticas recreativas, seguramente le gustarán. En ogame teníamos un hilo de pruebas matemáticas, y tenía bastante movimiento, y tenía pruebas de incluso más nivel (estas son de entre 3º BUP y 1º Carrera de una ingeniería), y no es que en ogame hubiese un "gran nivel".

En cuanto a lo de serie de 345823 número, si lees pone "consecutivos". Si son consecutivos, ¿para qué tendría que contarlos? Me llega con ver el primero.

Desconectado Ningüino CDR-lar

  • Mossirg Lig, miembro renombrado del CSUI

  • Mensajes: 21473
  • Cosas: 50
  • Sexo: Masculino
  • Cipotes, cipotes, cipotes: eso es el rocio.
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #3 en: 08 de Mayo de 2012, 21:32 »
Pues el primero ni idea. El segundo lo tengo claro, pero tengo que plantearme cómo se expresaría. El tercero no sé razonarlo, al menos a priori. Pero yo es que no sé mates.
Hay partes del comportamiento de los bonobos que molan y otras que no molan tanto. Como pasa con la Biblia.

Hoijan, a follar al parque.

Los trapos sucios se limpian en casa  X(

Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #4 en: 08 de Mayo de 2012, 21:59 »
Pues el primero ni idea. El segundo lo tengo claro, pero tengo que plantearme cómo se expresaría. El tercero no sé razonarlo, al menos a priori. Pero yo es que no sé mates.

El tercero no es de matemáticas, realmente... es de lógica. Si tuvieses que analizarlo usando la matemática, seguramente la única rama posible sería conjuntos o estadística, pero solamente el concepto de permutación. Ni siquiera te hace falta conocer la fórmula de la permutación. La única fórmula utilizada para resolverlo es el mínimo común múltiplo.

El primero es simplemente teórico, de nuevo también el único conocimiento que hace falta a priori es el mínimo común múltiplo.

Te doy una pista, supongamos que en lugar de esa brutalidad, queremos solamente 5 números consecutivos, para eso lo más sencillo sería partir del número x, y sabemos que tenemos que hallar algo divisible entre 2, 3, 4, 5, 6, por ejemplo. Si mod es la operación módulo (la resta) buscamos algo tal que:

x + 2 mod 2 = 0
x + 3 mod 3 = 0
x + 4 mod 4 = 0
x + 5 mod 5 = 0
x + 6 mod 6 = 0

así que x debe ser divisible entre 2,3,4,5 y 6. Y ahí interviene el mínimo común múltiplo... 6 es 2*3 así que lo descartamos, 4 divisible entre 2, descartamos, queda 4*5*3 = 60
y vemos que efectivamente 62, 63, 64, 65 y 66 son compuestos.
Pero así habríamos calculado el menor de todos, pero no se busca el menor, así que no hace falta el mcm... ¿qué queda entonces? ;)

Desconectado Sandman

  • Grünschnabel

  • Mensajes: 13754
  • Cosas: 240
  • Sexo: Masculino
  • ¿Sabías que 666/106≃2pi?
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #5 en: 08 de Mayo de 2012, 22:53 »
Pelu, no te desanimes, yo aprecio tu esfuerzo xD

No me gustan mucho las matemáticas, pero si encuentro un rato lo intento.
Blog novela, con zombies:


Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #6 en: 09 de Mayo de 2012, 21:15 »
¿A nadie se le ocurre ninguno? ¿Hacen falta más pistas?

Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #7 en: 12 de Mayo de 2012, 15:48 »
Pues nada, resolviendo el primero:

Algo más arriba lo resolví, pero hacía falta el mínimo común múltiplo, así que era complicado. Pero ya dije que no buscaba la menor de las secuencias, sino al menos una. Recupero el ejemplo que puse:

Citar
x + 2 mod 2 = 0
x + 3 mod 3 = 0
x + 4 mod 4 = 0
x + 5 mod 5 = 0
x + 6 mod 6 = 0

así que x debe ser divisible entre 2,3,4,5 y 6. Y ahí interviene el mínimo común múltiplo... 6 es 2*3 así que lo descartamos, 4 divisible entre 2, descartamos, queda 4*5*3 = 60

Pero queremos que no sea complicado, sino genérico... así que no hagamos el mínimo común múltiplo, así que nos quedaríamos con el factorial.
En ese ejemplo buscábamos 5 números compuestos consecutivos, y veíamos que entonces tendría que ser divisible entre 2, 3, 4, 5 y 6... y resulta que 6! es 2*3*4*5*6 y por todos ellos. Pero las ecuaciones están construídas comenzando por x+2, así que el resultado final es:

Para todo número x, si queremos calcular x números compuestos consecutivos, la fórmula es:
x!+2

Contestando a la pregunta concreta, que busca 345823 números compuestos consecutivos, la respuesta sería
345823! +2



=====================================================================
El segundo:

Si el número de la potencia es n, y el número de cifras es c, entonces estaríamos calculando:

x = (n^0/10^c) + (n^1/10^2c) + (n^2/10^3c) + (n^3/10^4c) + ...

Si nos fijamos en todos los términos menos el primero, todos tienen al menos n arriba y 10^c abajo, así que podemos sacar el factor común:

x = (1/10^c) + (n/10^c) * [ (n^0/10^c) + (n^1/10^2c) + (n^2/10^3c) + (n^3/10^4c) + ...]

Si nos fijamos ahora, lo que va entre corchetes se corresponde con la primera definición de x que hemos dado, así que sustituimos

x = (1/10^c) + (n/10^c)*x

Ponemos las x en un lado...

(1-n/10^c)*x = 1/10^c

Y resolvemos x:

x = 1/(10^c*(1-n/10^c))
x= 1/(10^c-n)

Es decir, que nos ha quedado reducido a una división de 1 entre un número que es 10 elevado al número de cifras menos el número que buscamos.

Comprobamos, por ejemplo potencias del 2 tomadas de 3 en 3:
x = 1/(10^3-2) =  x = 1/998 = 0,00100200400801603206412825651303

==============================

El último lo dejo pendiente a ver si alguien lo saca ;)

Desconectado Maik

  • Vasco descafeinado

  • Mensajes: 7190
  • Cosas: 85
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #8 en: 20 de Mayo de 2012, 16:00 »
1.

Código: [Seleccionar]
<html>
<head>
</head>
<body>
<script language="JavaScript">
var n,m,res;
for(n=2;n<=345823;n  ){
for(m=2;m<n;m  ){
res=n%m;
if(res==0){
document.write(n ', ');
break;
}
}
}
</script>
</body>
</html>
?
« última modificación: 20 de Mayo de 2012, 16:04 por Mike »

Desconectado Bill

  • Entrevistador de marmotas

  • Mensajes: 11429
  • Cosas: 5
  • Sexo: Masculino
Re:¿Sabes matemáticas? ¡Demuéstralo!
« Respuesta #9 en: 20 de Mayo de 2012, 18:35 »
Eso te daría la lista de números compuestos desde el 2 hasta 345823.
Pero le faltan cosas, para empezar en los bucles for falta el incremento de las variables, supondré que es por el formato de los posts.
Y luego, es terriblemente ineficiente. Una forma de ganar eficiencia es no iterar las divisiones desde 2 hasta n-1, si un número es compuesto, el mayor número contra el que debes dividirlo es contra la raíz cuadrada de sí mismo, dado que si no ya habrías encontrado un factor más pequeño.
Luego, los estás comprobando una y otra vez dividiendo contra números compuestos también. Ya que estás en el bucle iterando para buscar números compuestos, puedes meter los primos en una lista, y cada número solamente tienes que comprobarlo contra cada primo tal que dicho número primo sea menor o igual que la raíz del número que estás comprobando.

Pero como dije, no es la respuesta a la pregunta, lo que se buscan son 345823 números compuestos consecutivos, además es una pregunta que requiere una respuesta matemática, para contestarla desde un punto de vista informático necesitarías mucho tiempo y programarte un módulo de lo que se llaman "huge numbers" para poder almacenar números enormes, porque el resultado no te va a caber en un entero de 64 bits... ni siquiera en uno de 128 bits.

 

Noticias frescas

Hemos escondido un billete dorado en uno de los hilos del foro.

* Últimos mensajes

Adivina la película por raul_isl
[Hoy a las 23:20]


El gran hilo de las imágenes chorrilongas por raul_isl
[Ayer a las 22:48]


O.o por Orestes
[24 de Enero de 2023, 01:12]


La Escama de Arraizut: Electric Boogaloo [Finalizada] por raul_isl
[24 de Enero de 2023, 00:01]


El hilo con el increíble título mutante por raul_isl
[22 de Enero de 2023, 22:32]